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Figure S1. The simulation study to evaluate the accuracy of isoform quantification using the 

FluxSimulator. For paired-end short read data, we plot predicted isoform abundance scores against true 

abundance scores. R
2 calculated by robust linear regression analysis was shown in this figure. 30 millions 

50-mer paired-end short reads were generated and used for this simulation study.   

 
 
 

 
Figure S2. An example of novel (context specific) isoform target.   

 

 



Section 1: Technical details of the EM algorithm for isoform quantification  
 

Suppose for each gene there are   annotated isoforms (denoted as           ).  For each 

short read we observed,    is used to denote the probability that this short read is generated from 

isoform   , where           and               . 

 

Suppose for one gene, we have N short reads (denoted as            ) and we know 

the correspondence between short reads and isoforms. Then we can use an     indicator matrix 

                         to represent the correspondence between short reads and isoforms. If the 

    read is generated from isoform   , then      ;       otherwise. So, for the Z matrix, each 

row indicates one short read, and only one column for this row with value equal to  . If the   

matrix is our observed matrix, it is easy for us to calculate the isoform proportions. The 

probabilities                can be used for isoform proportion estimation. Intuitively, the 

number of short read which are generated from isoform    can be calculated by sum of     

column, correspondingly        
 
    , then the estimated isoform proportion         . 

 

The ambiguity issue in our study is that most of short reads are compatible with more 

than one isoform, therefore, the indicator matrix Z is not fully observed. What we actually 

observed in a RNA-seq experiment is another matrix                        , where      
 

  
 if the 

ith short read is compatible with isoform   , and       otherwise.    is the length of isoform    

and  
 

  
  measures the contribution of one short read to isoform   . Compare with matrix Z, which 

has one and only one non-zero value in each row, the matrix Y has one or more than one non-

zero value in each row. If      , then     must be  , but if      , then     may or may not be  . 

In our manuscript, we define Y as the observed cDNA fragment-compatible matrix, and Z as the 

unobserved cDNA fragment-originating matrix.  

 

Let’s denote                 . The log likelihood function of our isoform proportion 

model with the observed cDNA fragment-compatible matrix is  

 

                          
   

 
      . 

 

The maximum likelihood estimates (MLE) of P can be written as                   , 

which cannot be obtained in one step. 

 

The EM algorithm can be employed to calculate the maximum likelihood estimates 

(MLE) of the isoform proportions                 from our observed cDNA fragment-

compatible matrix Y. The EM algorithm works in an iterative way, and it will be converged after 



numbers of iterations. Let’s use     to denote the isoform proportions computed after     

iteration. We initialized          
               as   

       . Each iteration updates      to 

       through accomplishing the following E and M steps: 

 

E-step: 

   
                     

                         
      

            =     
     

 
         

   

          
    

   

       

 

M-step: 

Let   
     

        
      

         

   
     

   
  

     

 
     

 

The E-step updates the probabilities that each short read generated from isoform    based 

on the current estimated isoform proportion set       from    
    to    

     , and M-step updates 

isoform proportion set from      to        based on    
     .  The EM algorithm iterates between 

E and M steps until convergence, i.e.,    
     

   
   

  
      ,   is an arbitrarily small positive 

number, i.e. 0.00001. To this end, we get the converged isoform proportions as        

    
                  The EM algorithm for isoform quantification using RNA-seq is adapted 

from a similar algorithm developed for isoform quantification using EST data (Xing et al 2006).  

 

In order to test the accuracy of our EM algorithm in estimating isoform proportions, we 

used simulation data generated from FluxSimulator. The details are described in our manuscript.    

 

Section 2. Additional evidence for superiority of the seed enrichment 

approach over the seed presence approach 

 
The seed enrichment approach predicts targets from a statistical perspective by 

comparing “seed concentration” in different genomic regions for each isoform with “expected” 

seed concentration in the whole genome range. We hypothesize that the higher seed 

concentration in a particular region, the higher chance one of the seeds will be functional in that 

region. In order to test this hypothesis, we provide a set of complementary evidence as follows:  

 

(1). Comparing with the seed presence approach, our seed enrichment approach represents a 

more stringent way to miRNA target prediction. As demonstrated in Figure S3, the seed 

enrichment approach further reduces the number of candidate targets compared with the seed 

presence approach. It helps researchers, especially experimentalists, focus on the highest seed 

concentrated region and provides biological insights on miRNA-155 binding mechanisms. 



Moreover, we found that the result of our seed enrichment analysis is consistent with the existing 

biological evidence (e.g. Yue D et al., Curr Genomics., 10(7):478-92, 2009.) in that seeds in the 

3’-UTR are more potent than those in the 5’-UTR or coding region.    

 

To summarize, using the seed enrichment approach, we are not attempting to predict 

which seed is the functional one. Instead we attempt to predict a specific seed site region, where 

is more likely to contain a functional seed.  

 

(2). To compare seed presence approach and seed enrichment approach in an objective way, we 

examined the performance of both approaches using a published dataset reported in  

Bandyopadhyay and Mitra (Bioinformatics, 25(20):2625-2631, 2009). In the dataset, we used 

human miRNA targets having seed(s) present in their 3’-UTR’s: 106 of these are experimentally 

verified positive targets, and 10 isoforms are experimentally verified negative targets. If we were 

to use the seed presence approach, all of these 116 isoforms would have been predicted as 

positive targets. In comparison, after using seed enrichment approach, we are able to 

discriminate those 116 targets into both positive and negative groups. The positive group 

enrichment p-value is 0.000676, and the negative group enrichment p-value is 0.996867 

(Pearson’s Chi-Square Test). The p-values indicate that positive targets tend to have seed 

enrichment in their 3’-UTR’s, while negative targets do not. In summary, the seed enrichment 

approach is more accurate and specific than the seed presence approach in predicting microRNA 

targets. We also include this analysis to the supplemental material of this manuscript (Table S7).  

 

 

Section 3: Additional justification of combining seed enrichment and isoform-

level down-regulation in predicting miRNA targets.  

 
We provide justification sequentially as follows. First, we consider the situation where 

all the miRNA-155 targets, either predicted by the isoform-level computational approach or by 

the seed enrichment/presence approach, are in the 3’-UTR’s. Our goal is to validate our isoform-

level approach combining down-regulation and seed enrichment. Second, we extend our 

miRNA-155 target prediction to other regions of the transcripts. Our goal is two-fold: to confirm 

3’-UTR is still the primary targeting region for miRNA-155; to predict other regions as potential 

targeting regions as well, which is consistent to the recent findings (e.g. Lytle et al., PNAS, 

104(23): 9667-72, 2007; Inhan Lee et al., Genome Res., 19(7):1175-83, 2009 and Yue D et al., 

Curr Genomics., 10(7):478-92, 2009).  

 

Targeting 3’-UTR region: As we mentioned in the manuscript, transcript down-

regulation along does not provide sufficient condition to be considered as a transcript targeting 

criterion due to indirect cellular responses or other binding mechanisms. Similarly, because some 

seeds are non-functional, we cannot avoid false targets if we only use seed enrichment as the sole 

prediction criterion. It follows that neither of these two criteria are good enough for miRNA-155 
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target prediction at isoform-level. Based on the conventional notion that if one seed is functional, 

it must have a site in the 3’-UTR of the target transcript, causing the transcript down regulated. 

Thus, we believe that combining differential expression analysis at isoform-level and seed 

enrichment analysis will lead to more accurate target prediction and further reduce the number of 

candidate targets. The stringent criteria of combining down-regulation and seed enrichment are 

particularly meaningful to experimentalists.   

 

Based on the reviewer’s comment, we investigated the number of target transcripts under 

different criteria with the down-regulation ratio set to 0.8. The result is shown in Figure S3: 

 

 
 

Figure S3. Number of isoform transcripts satisfying different criteria, from the most relaxed to the most 

stringent.  

 

In Figure S3, we can clearly see the advantage of combining differential expression 

analysis and seed enrichment to predict miR-155 targets at isoform-level. There are 6,531 

isoforms with at least one seed presenting at their 3’-UTR’s. By using the seed enrichment 

approach, we can further decrease this number to 5,405. 2,828 isoforms show down-regulation 

by miR-155. As shown in Figure S3, by using a combination of down-regulation with 3’-UTR 

seed enrichment, we are able to decrease the number of predicted isoform targets down to 1,528.  

 

Targeting 3’-UTR, 5’-UTR and coding region: Since it has been recently reported that 

miRNA binds not only to 3’-UTR but also to 5’-UTR and the coding region (e.g. Lytle et al., 

PNAS, 104(23):9667-72, 2007; Inhan Lee et al., Genome Res., 19(7):1175-83, 2009. and Yue D 

et al., Curr Genomics., 10(7):478-92, 2009.), we also performed a genome-wide seed enrichment 

analysis. The percentage of seed enrichment regions are shown in Figure S4. 
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Figure S4. miRNA-155 seed enrichment regions using the genome background 

 

From Figure S4, there are only about 10% of the total numbers of isoforms having seed 

enrichment in 3’-UTR, 5’-UTR or coding region. The isoforms with seed enrichment in 3’-UTR 

region exclusively (4.6%) have a higher percentage than those in 5’-UTR (1.3%) or coding 

region (3.4%) exclusively. The isoforms with seed enrichment in more than one region are very 

rare (0.5%). Figures S3, S4 and additional analysis illustrate that the seed enrichment criterion is 

expected to be highly accurate and specific. 

 

Section 4: The EM algorithm fails to accurately estimate abundance levels of 

around 10% of isoforms.   

 
We simulated both single-ended and paired-end short reads using FluxSimulator, and 

used EM algorithm to estimate the abundance of isoforms in each gene (Figure 2b for single-

ended short reads, and Figure S1 for paired-end short reads). By using simulation data, both 

figures show that our EM algorithm can estimate isoform abundance very accurately since the 

estimated abundances are highly correlated with the true abundances for the vast majority of the 

isoforms with high robust R
2
. The very small portion of purple dots moving further away from 

the regression line (red line) correspond to those isoforms for which the EM algorithm fails to 

estimate their abundance accurately in some situations, such as too many isoforms within one 

gene, the length of the unique exon is shorter than the read length, and so on. 

 

We investigated the isoforms whose abundances were not accurately estimated by EM 

algorithm. The isoforms that meet the requirement (|log10(trueRPKM) – 

log10(predictedRPKM)| >= 1, RPKM is a standard way to represent the abundance of gene 

expression) are considered as outliers. There are about 10% of isoforms falling into this category. 

We further examined these outliers. We found that nearly 74% of outlier isoforms belong to 

genes with more than 5 isoforms and about 41% of outlier isoforms have at least one exon whose 



length is less than 50 bases. This analysis clearly demonstrates a limitation of our EM algorithm 

in estimating isoform abundance; however, it is predominantly accurate and effective for around 

90% of isoforms in the transcriptome.     

 

Section 5: Discovery of novel transcripts. 
 

First we performed exon junction analysis using Tophat (23), and we detected 2,553 

novel junctions that are not annotated in ASTD database. 544 out of 2,553 novel junctions share 

exons with the annotated transcripts through skipping exon or mutually exclusive exons 

mechanisms, corresponding to a total of 499 genes (Both annotated and novel transcripts relevant 

to these 499 genes are included in Table S5). We verified 9 out of 10 selected novel junctions 

using quantitative RT-PCR experiments (Table II, Figure S5). Second, we composed 1,572 novel 

transcripts that are supported by these 544 novel junctions as illustrated in Figure 1b. We 

augmented the ASTD annotation table by merging the 1,572 novel transcripts, followed by 

isoform quantification analysis using EM algorithm. After filtering by isoform RPKM value at 

0.2 cutoff, we discovered 51 significantly down-regulated novel transcripts with seed enrichment 

at 3’-UTR region, which are highly likely to be microRNA-155 targets. Detailed results are 

included in Table S6. We gave an example novel transcript in Figure S2. 

 

 

 
 

Figure S5. Verification of selected novel junctions using quantitative RT-PCR experiments. 9 out of 10 

were verified.  

 

 

 

 



Section 6: Legends of all supplemental tables. 

 
Table S1. Lists of putative microRNA-155 targets falling into each of the eight categories using 

down-regulation cut-off values of 0.6, 0.7 and 0.8.  

 

Table S2. A list of predicted microRNA-155 targets through whole transcriptome studies (down-

regulation cut-off of 0.8). 

 

Table S3. A list of predicted microRNA-155 targets through whole transcriptome studies (down-

regulation cut-off of 0.7). 

 

Table S4. A list of predicted microRNA-155 targets through whole transcriptome studies (down-

regulation cut-off of 0.6). 

 

Table S5. A list of annotated and novel transcripts supported by the context-specific junction 

evidence.  

 

Table S6. A list of predicted novel (previously not annotated) microRNA-155 targets. 

 

Table S7. Comparing the seed presence approach and the seed enrichment approach in an 

objective way using a published dataset reported in  Bandyopadhyay and Mitra (Bioinformatics, 

25(20):2625-2631, 2009) 
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